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SUMMARY 

In this paper a new set of stress-strain relations (uni- 

axial, equl-Siaxial, unequlbiaxial extensions and pure shear) 

for swollen networks were presented. Which are derived from the 

molecular theory of rubber elasticity with constraints of junc- 

tions and trapped entanglements and with crosslinks, trapped en- 

tanglements and carbon black-polymer interactions. They suc- 

r in relating the elastic equation of state to the volume 

fraction of polymer in swollen networks by three molecular para- 
! T 

meters C~, C 2 and C 5. The relation of stress-strain for uniaxial 

extension was verified by experiments. It is shown that this 

relation can successfully predict the dependence of V 2 on the 
! t 

C~, C2 and C3, and the contribution of modulus for swollen net- 

works from the trapped entanglement which it shows that role of 

entanglements can only approach to a limited value, never to 

zero. 

INTRODUCTION 

It is a simple matter to extened the elementary network 

theory to the case of a swollen phantom networks. The resulting 

equation for the work of deformation per unit volume of the 

swollen phantom networks in pure homogeneous strain is given by 

Treloar (I) 

in which N is the number of chains per unit volume of the 

swollen networks; T is the absolute temperature; V 2 is the 
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volume fraction of polymer; K is the Boltzmann constant; 1,5. A2s 

and A3s are the principal extension ratios referred to the un- 

strains (i.e., stress free) swollen dimension. The corresponding 

relation between the stress(referred to the final strained swol- 

len area) and the extension ratio for simple extension is of the 

form: 

{'~--- ~V2'/5(As-A[ ~) , 6 = NKT (2) 

in which f' is the force per unit unstrained swollen area. Ex- 

periments show a remarkable deviations from the classical theory, 

but it may be characterized by the Mooney (2) equation 

~'= f'Va'/~/Z (As-Ag")-C~+ C~ virl3Ai'=C,+C2A~ ' (5) 

on this basis a plot of #'against AI' should yield a straight 

line with the slope C~V2 -2/9 and the intercept C~. But the experi- 

mental data(5) showed that the C 2 falls in a linear manner with 

increasing V 2 . 

It is well known that the C I and C 2 are only empirical con- 

stants, and have no any molecular basis. Thus up to date no 

generally accepted explanation for the above facts has been put 

forword. The first theoretical attempts to account for this ap- 

proximately linear dependence of +' on A~' are due to Ronca (4) 

and Flory (5). The recent molecular theory of Flory and Erman(6) 

leads to the following expression for tetrafunctional networks 

~' = (~ /Vo)  R T { ,  + ~K (AI  V~ ~/" ~ X ~ - ~ =  ~ ( ~  V~ ~/~ ~] ( X ~ - A ~ - ' }  <4) 

where the function K is defind in ref.6 (equation 37); R is the 

gas constant; the quantity ~ is the cycle rank and Vo is the vo- 

lume. It is apparent that the equation of (4) still can not pre- 

dict the above experimental dependence of C 2 on V 2. Therefore in 

this paper we will present a new set of stress-strain relations 

for swollen networks, which was derived from our proposed theory 

of rubber elasticity(7-8) . These relations both can predict suc- 

cessfully the elastic properties of swollen network at moderate 

degree deformation and explain the dependence of V 2 on the CI 

and C2. 

STORED-ENERGY FUNCTION OF SWOLLEN REAL NETWORKS 

In previous papers t7-8) a new molecular theory of rubber 
J % 



547 

elasticity with constraints of junctions and trapped entangle- 

ments and with the crosslink, trapped entanglements and carbon 

black polymer interactions was presented. This investigation is 

to extend this theory of elasticity to the case of a swollen 

real networks. 

I). Stored-Energy Function of Real Networks 

The approximate expression of stored-energy function for 

real network in second order is given by the following equa- 

tion(7 -8) 

W = F ~ =  ! /2 KT{[~cBcf~e~e+~cfScf +~e~Bef]  (I,-3)+(~cDc+~c~Dcf) 

~)+[~eDe * ~efDe9 ] Ln [ I t ~ ] t  [geCeT ~c Co+ ~C~ 

~'~e~ Ce~] (It  ~ -3z)} ~5) 

where 11 =A~.A~ +A~ ; 13 =AI-AzA~ -~c8c~ ~cBe, gcfSq and 

9~B~ are the number of elastically active long chains in the 

crosslinked, trapped entanglement and carbon black-polymer net- 

works; 9cDc and ~r are the number of elastically active 

chains in connexion with changing volume; ~eDc and gel De9 are 

the number of elastically active entanglement chains in the 

trapped entanglement and carbon black-polymer networks; ~eCa 

~cCc ~ ~c~Ccfand ~e~ge~ are the number of elastically active 

short chains in crosslinked, trapped entanglement, and carbon 

black-polymer networks. For incompressible networks the equation 

of (5) reduce to 

W=W~t~ C,oo(I,-~)~Co2o ~n (l~/~)TCzoo(l~+B z) (5~ 

where CI00 = Cl00c + C100c f + ClO0e + C100e f , C020 = C020e + 

C020ef , C200 = C200c + C200e + C200cf + C200ef , A,,Az, andA~ 
are the principle extension ratios referred to unswollen state. 

2). Stored-Energy Function of Swollen Real Networks 

Let us consider the original unit cube swollen in the ratio 

of 1/V 2 and subsequently deformed to the dimension ~1, t2, and 

~3 by principal stress Tl, Tz and T~. According our proposed 

theory (7-8) the total change in the network free energy, A F6 , 

in passing from the unstrained unswollen state to the strained 

swollen state is given by equation 
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' ~+L  ~ L ~-5)+cozoLn[I/~(L~*L~*L#,)] AF~ = C/oo(~, z + 3 

, , , L ~ . 2  _ 9 ]  (6 )  f Cool / -n (L4LzL~)+C2oo[(LftLz 32 

the change in free energy, aFo, due to the isotropic swelling in 

the ratio Ao = I/v2 '/~ and in absence of stress is 

= ~ zz aFo C ,oo (SA~-~)+ Co2o Ln[ I/~(3A~)]+ Coo, LnC3k6 ~) C2oo[(3ko)-q]~) 

the required free energy of deformation of swollen networks, ~F', 

is the difference between these two quantities, which is given 

by 

-tCool ', v=-~ )-I- C2oo [ ( ' 2 *L  z + ~ ~ . ~  2 ~ ,  -:,~V -4/~ ~., ~8) 

for an incompressible swollen networks the term of coo, Ln ~ V-~/ 

is equal to zero, therefore the above equation reduces to 

T h i s  may be more  c o n v e n i e n t l y  e x p r e s s e d  i n  t e r m  o f  t h e  e x -  

t e n s i o n  ratios A~s..k~s and A~s , referred to the swollen un- 

strained state by writing L~ =A,~/w '/~ , La =)k2s/w '/~ and 

L~ =A~s/Vz' /% namely 

-41~ z -2J=3 2 z 2 -L z 2 2 z t z, z 

rio) 
this is the free energy of deformation per unit volume, measured 

in the unswollen state. To obtain the stored-energy function 

per unit volume we require the free energy of deformation per 

unit volume, measured in the swollen state. Denoting this by AF, 

we have 
:3  2 2 2 .  

A] z =Vx  AF I ~  C oo V2 / < J ~ l S t ~ 5 ~ 3 s - 5 ) f  Co20VzLn[1/5(J~,~+A~ m A ~ ) ]  

.E C2oo y2-t/5 2 : 2 2 [ ( ~ , s * A ~ + ) ~ s )  - 9 ] d I ) 

the corresponding stored-energy function thus becomes 

W : A ]  = CtOQ V2 i /3 z~ 2 t 2 

"l'C~ooVz ,/3 [(Al~ ~ z 2 - * - ) k 2 . S  tA3S ) - -  S ] (12) 

comparison with (5') shows that this is of the same form as the 

stored-energy function for the unswollen rubber, except for the 
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factor V2 i/3 , V2 and V 2 -~/~ in the corresponding C100, C020 

and C200. 

RELATION OF STRESS TO STRAIN AND EQUILIBRIUM MODULI FOR SWOLLEN 

NETWORK 

A). Relation of stress to strain 

The relationships of stress to strain for four types defor- 

mation at constant volume were derived from equation of (12) by 
~W 

the relation Ti =(~) �9 They are given by the following equa- 

tions : 

I). Uniaxial extension ( ~s=f/Aos , f-force, Aos-the initial 

cross section) 

T~ = z ( ~ - ~ - ~ ) { C , o o V 2 ' / ~ . c o 2 o V ~ / c ~ . z / ~ s ~ + 2 C ~ o o V 2  - ' / ~  (A#+2/A~)] (13) 

% = Z( ks -A~9 {CiooV2,13 tCo2oVz/(A~ *2/As)] t ,39 

2). Unequi-biaxial extension ( ~is =f/A,s , Tzs =f/Azs , ~s#T~ ) 

( T , s - ' ~ z s ) =  2(A,~-A.~)[C,oQVz'/s+s A ~ ) ] 2  2 -z -z (14) 

3). Equi-biaxial extension ( T l s = T 2 s = T 3 ,  q-ss=O) 

T~ = z (z  t-,q > (As-As -~) ~.C~oo Vz '/~ -~ Co2o V2 / (ZA# * A~'b]  r 5) 

4). Pure shear (A3s=l, Tfs=Ts, q[2s=0) 

%% = ~(1 *~#) (As -AF ~) [C~ooV2 i/~ t Co2oVz/(A~ tA~2+ 1 ) ] (16) 

B).  E q u i l i b r i u m  moduli  

The e q u i l i b r i u m  mudulus can be o b t a i n e d  from t h e  f o l l o w i n g  

r e l a t i o n  3A_(~Lx)A_I=Gsh ( 8 )  t h e y  a r e  g i v e n  i n  equa tuon  o f  (17)  

(Gsh)5 = ~C,oo .V2'/~+ ~-Vz'Co2o * IZVz- W3. C2oa ( t7)  

The equation of (13) can be rewritten in the following form 

V, z4-/~ 
2 (As-X~9 

where ~" and As are referred to the unstrained swollen area and 

extension ratio. 

COMPARISON WITH EXPERIMENTS 

The observations of Gee(9) have shown that the deviation of 

force-extension curve for vulcanized rubber from the form pre- 



550 

dicted by classical theory becomes progressively less noticeable 

as the degree of swelling is increased. This effect has been 

reexamined in more detail by Gumbrell, Mullins and Rivilin (3) 

for a number of different swelling liquids. Their experimental 

stress to strain data were treated with equation of (13') 

derived from our proposed theory of rubber elasticity. The re- 

duced force ( ~ '= T~/2(A~-A~-2)) is plotted against (Xs+2/As) . A 

series of lines with different volume fraction of rubber was 
v 

obtained. They are given in Fig. I. The C 1 = CI00V2 '& and 
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Fig. 1. Relation of stress 

to strain for uniaxial ex- 

tension(3) with equ. (I 3). 
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Fig. 4. Relations of stress 

to strain for uniaxial exten- 

sion (10) with equ. (18); 

V 2 =1.00; 0.753; 0.585 

0.455; O.4O7. 
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! 

C 2 = C020 V 2 were determined from the intercept and slope by 

least square method. Then the C1 and C~ are plotted against V 2 

and V 2 respectively. Two predicted lines are obtained and given 

in Fig. 2 and 3. The values of CI00 and C020 determined from the 

slope are in agreement with the other from the unswollen state 

very well. 

For the larger deformation of swollen networks the Mullins' 

experimental data(10) was treated by equation of (18). The @" 

is plotted against V2+/~(A~ +2/A~s)-~ A predicted composite line 
was obtained. It is given in Fig. 4. The C200 and C020 were ob- 

tained from the slope and intercept by least square method. Their 

values are in agreement with the other obtained from the unswol- 

len state very well. 

These above results once again show that our proposed mole- 

cular theory of rubber elasticity is in agreements with experi- 

ments very well; and offer same evidence, that the contribution 

of equilibrium moduli for swollen networks from the trapped 

entanglements can only approach to a limited value, never to 

zero. It is due to that in experiments the value of volume frac- 

tion for polymer in swollen networks with pure solvents can never 

take the value of zero. The equilibrium moduli of swollen net- 

works with different volume fraction V2 of polymer was calcu- 

lated by the equation of (17). Their values are given in Table 1. 

Table 1. The molecular parameters of swollen networks 

with different volume fraction of polymer 

V 2 1.00 

Gsh (Kgcm -2) 5.46 

C100( " ) -5.45 10 -5 

C020( " ) 7.14 10-4 
(7,87 10""+) * 

" 0.15 10- 4 C200( ) (0.12 10-4)* 

0.753 0.585 0.455 0.407 

4.56 4.01 3.65 3.54 

*Obtained from slope and intercept. 
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CONCLUSION 

A new set of stress-strain relations ( uniaxial, equi- 

~iaxial, unequi-~iaxial extension and pure shear ) was presen- 

ted. Which are derived from the molecular theory of rubber 

elasticity with constraints of junctions and trapped entangle- 

ments and with crosslinks, trapped entanglements and carbon 

black-polymer interactions. They succeeded in relating the 

elastic equation of state to the volume fraction of polymer ~2 

in swollen networks by three molecular parameters , C 2 and 

C 3 �9 
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